Opportunity for Detection	Criteria: Likelihood of Detection by Design Control	Rank	Likelihood of Detection	Opportunity for Detection	Criteria: Likelihood of Detection by Process Control
No detection opportunity	No current design control; Cannot detect or is not analyzed.	10	Almost Impossible	No detection opportunity	No current process control; Cannot detect or is not analyzed
Not likely to detect at any stage	Design analysis/detection controls have a weak detection capability; Virtual Analysis (e.g., CAE, FEA, ect.) is <u>not</u> <u>correlated</u> to expected actual operating conditions.	9	Very Remote	Not likely to detect at any stage	Failure Mode and/or Error (Cause) is not easily detected (e.g. random audits)
Post Design Freeze and prior to launch	Product verification/validation after design freeze and prior to launch with <u>pass/fail</u> testing (Subsystem or system testing with acceptance criteria such as ride and handling, shipping evaluation, ect.).	8	Remote	Problem Detection Post Processing	Failure Mode detection post-processing by operator through visual/tactile/audible means
	Product verification/validation after design freeze and prior to launch with <u>test to failure</u> testing (Subsystem or system testing until failure occurs, testing of system interactions, etc.).	7	Very Low	Problem Detection at Source	Failure Mode detection in-station by operator through visual/tactile/audible means or post-processing through use of attribute gauging (go / no-go, manual torque check, clicker wrench, etc.)
	Product verification/validation after design freeze and prior to launch with <u>degradation</u> testing (Subsystem or system testing after durability test, e.g., function check).	6	Low	Problem Detection Post Processing	Failure Mode detection post-processing by operator through use of variable gauging or in-station by operator through use of attribute gauging (go/no-go, manual torque check/clicker wrench, etc)
Prior to Design Freeze	Product validation (reliability testing, development or validation tests) prior to design freeze using pass/fail testing (e.g., acceptance criteria for performance, function checks, etc.).	5	Moderate	Problem Detection at Source	Failure Mode or Error (Cause) detection in-station by operator through use of variable gauging or by automated controls instation that will detect discrepant part and notify operator (light, buzzer, etc.) Gauging performed on setup and first-piece check (for set-up causes only)
	Product validation (reliability testing, development or validation tests) prior to design freeze using test to failure (e.g., until leaks, yields, cracks, etc.)	4	Moderately High	Problem Detection Post Processing	Failure Mode detection post-processing by automated controls that will detect discrepant part and lock part to prevent further processing
	Product validation (reliability testing, development or validation tests) prior to design freeze using degradation testing (e.g., data trends, before/after values, etc.).	3	High	Problem Detection at Source	Failure Mode detection in-station by automated controls that will detect discrepant part and automatically lock part in station to prevent further processing.
Virtual Analysis - Correlated	Design analysis/detection controls have a strong detection capability. Virtual analysis (e.g., CAE, FEA, etc.) is highly correlated with actual or expected operating conditions prior to design freeze	2	Very High	Error Detection and/or Problem Prevention	Error (Cause) detection in-station by automated controls that will detect error and prevent discrepant part from being made.
Detection not applicable; Failure Prevention	Failure cause or failure mode can not occur because it is fully prevented through design solutions (e.g., proven design standard, best practice or common material, etc.)	1	Almost Certain	Detection not applicable; Error Prevention	Error (Cause) prevention as a result of fixture design, machine design or part design. Discrepant parts cannot be made because item has been error proofed by process/product design